DEMYSTIFYING IMO EEXI & CII AND THEIR IMPACTS ON SHIPPING

John Kokarakis PhD Technical Director Bureau Veritas

SHIPPING GHG EMISSIONS – FROM ZERO TO ZERO

Emissions from shipping between 2012 and 2018 (thousands tons)

Présentation to HIMT

Required DWT dependent A(DWT)^B

Attained MCR, Capacity, fuel Speed, Consumption

© 2021 Bureau Veritas Marine & Offshore

Présentation to HIMT

Attained EEXI formula and correction factors

- P_{ME}(i) : 75% of MCR for each Main Engine
 - : Emission factor for fuel used in shop tests

SFC_{ME}(i) : Specific fuel consumption at 75% MCR from NOx Technical File for Main Engine SFCAE(i) : Specific fuel consumption at 50% MCR from NOx Technical File for Generator

IF THERE ARE NO DATA: SFC_{ME}=190 g/kWh and SFC_{AE} = 215 g/kWh

Capacity : Deadweight at scantling draft

V ref : From an approved speed-power curve at scantling draft at 75% MCR

Alternatively: Estimate power-speed curve numerically/CFD or by Statistical Evaluation

© 2021 Bureau Veritas Marine & Offshore

CF

Required EEXI

Shin tune	Size	Reduction factor	Ship type	a	b	C
Sinp type			Bulk carrier	961.79	DWT	0.477
Bulk carrier	200,000 DWT and Above	15	Gas carrier	1120	DWT	0.456
	20,000 to 200,000 DWT	20	Tanker	1218.8	DWT	0.488
	10,000 to 20,000 DWT	0-20*	Container ship	174.22	DWT	0.201
Gas carrier	15,000 DWT and above	30	Conoral cargo chip	107.48	DWT	0.216
	10,000 to 15,000 DWT	20	General cargo ship	107.48	DVVI	0.210
	2,000 to 10,000 DWT	0-20*	Refrigerated cargo carrier	227.01	DWT	0.244
Tanker	200,000 DWT and Above	15	Combination carrier	1219	DWT	0.488
	20,000 to 200,000 DWT	20		(DWT/GT) ^{-0.7} • 780.36 where DWT/GT<0.3	DWT	0.471
	4,000 to 20,000 DWT	0-20*	Ro-ro cargo ship			
Container	200,000 DWT and above	50	(vehicle carrier)	1812.63 where DWT/GT≥0.3	5.111	0.172
	120,000 to 200,000 DWT	45	Ro-ro cargo ship	1405.15	DWT	0.498
	80,000 to 120,000 DWT	35	Po-ro passenger ship	752.16	DWT	0 381
	40,000 to 80,000 DWT	30	Ko-to passenger ship	752.10	DWT	0.501
	15,000 to 40,000 DWT	20	LNG carrier	2253.7	DWT	0.474
	10,000 to 15,000 DWT	0-20*	Cruise passenger ship	172.24		0.044
LNG carrier	10,000 DWT and above	30	having non-conv. prop	170.84	GT	0.214

Required EEXI=EEDI(0)x {1-[Reduction Factor]/100}

Required Phase Zero 2013 EEDI=a(DWT)^{-c}

© 2021 Bureau Veritas Marine & Offshore

Présentation to HIMT

Seal of the mechanical stop screw

© 2021 Bureau Veritas Marine & Offshore

Présentation to HIMT

Energy saving devices

Improvement of reference speed with Energy saving devices (easy retrofit)

- CFD will be acceptable to document ship specific effect of ESD in EEXI Technical file
- For cases of small EEXI exceedance, ESD may be useful to replace or substantially reduce the EPL
- Larger gains may be achieved by more extensive hull/machinery modifications (e.g. bulbous bow modification, waste heat recover etc.)

The Steam turbine case

Steam Turbine and EEXI – The issues:

- Large margin of non-compliance due to low efficiency of the propulsion system
- Reduction of consumption due to power limitation may reach levels below the natural boil of rate. Regular steam dumping will be required.
- Gas used in steam dumping may not be counted for EEXI as it is a safety measure
- Reduction of service speed due to power limitation is significant
- More than 1/3rd of the world fleet will be operating at reduced speed and low efficiency levels

MEPC76 SHORT-TERM MEASURES

SUMMARY

EEXI KEY DECISIONS

- Engine power in the EEXI calculation (PME) should be the lower of
 - 83% of the maximum limited power (MCRlim)
 - 75% of maximum power (MCR)
- P_{ME} =min {0.75MCR, 0.83MCR-Δ(MCR)}

- Numerical calculations are accepted as an alternative to tank tests when calculating the speed in the EEXI calculation (vref)
- Additional options for calculating v_{ref} using inservice speed measurements will be further discussed and may be included at a later stage.

 An additional capacity correction factor for ro-ro cargo ships (vehicle carrier) was agreed.

CII FORMULA OPERATIONAL CARBON INTENSITY

MEPC76 KEY DECISIONS CII REFERENCE LINES $CII_{ref} = aCapacity^{-c}$

✓ CII reference lines: no changes vs CG and ISWG GHG 8

Ship type			Capacity	а	С
Bulk carrier			DWT*	4977	0.626
Gas carrier	65,000 and above		DWT	2384E7	1.910
	less than 65,000 DWT		DWT	8032	0.638
Tanker			DWT	5118	0.607
Container ship		DWT	1963	0.487	
General cargo ship		20,000 DWT and above	DWT	61293	0.854
less than 20,000 DWT		less than 20,000 DWT	DWT	361	0.336
Refrigerated cargo carrier		DWT	6736	0.599	
Combination carrier		DWT	151991	0.930	
LNG carrier	G carrier 100,000 DWT and above less than 100,000 DWT		DWT	9.860	0
			DWT**	1966E10	2.498
Ro-ro cargo ship (vehicle carrier)			GT	5831	0.633
Ro-ro cargo ship		DWT	15958	0.677	
Ro-ro passenger ship			GT	7691	0.586
Cruise passenger ship			GT	904	0.380

CII RATING METHODS PRINCIPLES AND EXAMPLE ILLUSTRATION

Principles

- Symmetry in C rated vessels
- D rated vessels occupy wider limits than B rated vessels
- Differences amplified in the smaller vessels
- The distribution is skewed towards the C, D & E rated ships

Worked example for "B" bulk carriers:

MEPC76 KEY DECISIONS CII ANNUAL REDUCTION FACTOR

New Reduction Factors

Year	Annual CII Reduction
2020	1.00%
2021	1.00%
2022	1.00%
2023	2.00%
2024	2.00%
2025	2.00%
2026	2.00%
2027	?
2028	?
2029	?
2030	?

End of Year	Total CII Reduction vs 2019	
2023	5.00%	
2024	7.00%	
2025	9.00%	
2026	11.00%	
2027-2030	?	

The CII reduction rates were set to increase by 1 percentage point (pp) per year for 2020– 2022 (BAU), followed by 2 pp per year for 2023–2026.

Last phase will be further strengthened and developed taking into account the review of the short-term measure by January 1st 2026.

Amendment implies that from 2019 to 2026 ships must reduce their greenhouse gas emissions by a total of 11%.

▲ Comparison with previous scenarios

MEPC76 agreed-up scenario Demand-Based scenario Supply-Based scenario Scenario for temperature rise 1.5°C

HOW TO IMPROVE CII

Waste Heat Recovery **System**

WAPS

ESD **VFD Control**

DESIGN

Weather routing

Hull cleaning/coating

OPERATIONAL Carbon Intensity Requirement In Operations

- Several Solutions exist •
- Both design and operational
- Some are easy to apply • good practices
- For retrofit decisions, vessel ٠ and operational profile needs to be carefully evaluated to confirm suitability and establish CAPEX and ROI
- Alternative fuels will • ultimately be needed

ENHANCED SEEMP

- **±** The draft SEEMP guidelines were not finalized due to time constraints and were sent to a Correspondence Group for further work and adoption at MEPC 78 in 2022 at the latest.
 - From 1 January 2023, evidence of carbon intensity reduction must be recorded in a new section of the vessel's existing Management System for Carbon Intensity (SEEMP)
 - On or before January 1st 2023, ships of 5,000 gt and above will need to revise their SEEMP to include
 - A. Description of the methodology to calculate attained CII and process of reporting value to Administration
 - B. Required annual CII for the next three years
 - C. An implementation plan on how the Required CII will be achieved during the next three years
 - D. A procedure for self-evaluation and improvement

OCTOBER 2021: ISWG GHG 10

